New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

نویسندگان

  • John M. Yarbrough
  • Ashutosh Mittal
  • Elisabeth Mansfield
  • Larry E. Taylor
  • Sarah E. Hobdey
  • Deanne W. Sammond
  • Yannick J. Bomble
  • Michael F. Crowley
  • Stephen R. Decker
  • Michael E. Himmel
  • Todd B. Vinzant
چکیده

BACKGROUND Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. RESULTS In this study, we have compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-d-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-d-glucosidase and xylanase activities remained high, with process yields decreasing only 4-15 % depending on lignin concentration. CONCLUSION We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-d-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes' affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.

Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentrat...

متن کامل

Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.

In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO(2) technologies. In addition to measuring the chemica...

متن کامل

Impact of surfactants on pretreatment of corn stover.

Lignin in pretreated cellulosic biomass can non-productively adsorb cellulase, resulting in loss of a significant portion of this expensive protein. In addition, lignin interferes with the path for cellulase action, slowing down hydrolysis. Thus, the effectiveness of enzymatic hydrolysis of pretreated lignocellulosic biomass can be significantly enhanced if lignin is removed or effectively modi...

متن کامل

The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis

BACKGROUND Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of addition...

متن کامل

Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.

Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015